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The emergence of ultrafast x-ray spectroscopy as a viable technique at the Advanced Light
Source (ALS) [1] allows for the observation of atomic re-arrangement in condensed-matter and
chemical systems on the limiting time-scales of atomic motion.  An intriguing initial experiment is
the time-resolved study of Fe(II) complexes, a family of transition metal complexes including
heme molecules and photo-sensitizers[2], which exhibit strongly coupled electronic, magnetic and
structural dynamics upon impulsive photo-excitation [3,4].   Specifically, with the time-resolved
study of the photo-sensitizer, Fe[tren(py)3]

2+, pictured in Figure 1, it is hoped that the roles of
the various degrees of freedom in the excited state evolution of these systems can be elucidated.

Figure 1:   Fe[tren(py)3]
2+

Fe[tren(py)3]
2+ has a singlet ground state.  Upon photo-excitation, the molecule is excited to a

metal-to-ligand charge transfer state.  Optical measurements, plotted in Figure 2, have determined
the transient, high-spin (∆S=2) state forms within 500 femtoseconds.  Concomitant with this
highly spin-forbidden transition is a structural dilation of the iron-nitrogen bond lengths by
roughly 10%.
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Figure 2:  Relevant electronic transitions and structural changes in Fe[tren(py)3]
2+ upon photo-excitation.  In the

time-resolved optical trace, a strong excited state absorption appears soon after photo-excitation, followed by a
bleach, indicating the formation of the high-spin (bond-distended) state in ~500fs.

Two possible scenarios can account for this behavior.  The first being a direct structural
distortion generated by photo-excitation gives rise to the transient, high-spin ground state.  High-
spin analogs of Fe[tren(py)3]

2+ created by distention of three of the six iron-nitrogen bonds have
been synthesized by the McCusker group, and lend creedence to this scenario.  The second
possibility is that electronic dynamics in the intermediate metal-to-ligand charge transfer state
give rise to a high-spin transient state (persistent during the strong excited state absorption),
which requires bond dilation for stability.  The bond dilation then confers energetic preference to
a transient high-spin state when the electron relaxes from the charge-transfer state, forming the
long-lived high-spin state.

The ultimate resolution of this issue relies on experiment.  Current efforts at beamline 5.3.1 are
focused on observing shifts in the iron L-edge, a signature of formation of the high-spin state [3],
on the ultrafast time scale.  Ultimately, work will proceed to measure time-resolved EXAFS
above the L- and K-edge to unravel the specific nature of the ligand cage distortion about the
central iron atom.  Together with time-resolved optical dichroism measurements and time-
resolved absorption measurements, x-ray measurements on the ultrafast time-scale will provide
complete information regarding the roles the electronic, magnetic and structural degrees of the
freedom play in the light-induced spin-crossover transition of Fe(II) complexes.
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